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Abstract   

The mathematical approach for mantle studies relies on 
both analytical and numerical methods, but the absence of 
known analytical solutions for most of the scenarios makes 
a wide variety of numerical codes that cannot be easily 
tested. For theses codes to be tested, there is a 
benchmark, which will provide comparison data from 
different researchers. This data is presented as a single 
result with deviation calculated with the similar data 
provided by the researchers. These benchmarks set 
standard models. This benchmark comparison study 
contains numerical simulations calculated using the 3D 
finite element parallel code CitcomCU for mantle thermal 
and thermochemical convection reproducing some of the 
benchmark cases proposed by Blankenbach et al. (1989). 
The mantle is treated as an inelastic, uncompressible and 
viscous fluid using the Boussinesq approximation with an 
infinite Prandtl number. This benchmark comparison 
allowed to verify the reliability of the numerical code for 
qualitative studies and observed limitations of the code 

were presented for a better quantitative result. The 
numerical solutions indicate that the linear interpolation 
of the thermal structure between the nodes results in 
larger deviations mainly in zones with relatively high 
gradient. The proposed method to this would be to 
increase the grid resolution in those zones seeking for a 
balance between grid resolution and consequent 
simulation run time. 

Introduction 

There are two main ways to study mantle thermal 
convection problems with a mathematical approach. The 
first one is through analytical approach making it to be 
possible to predict the behavior of the mantle applying fluid 
mechanics theory. The difficulty of this approach is 
associated with the absence of known solutions in most 
cases. Therefore, this approach can only be used for 
simple studies of the mantle. The second mathematical 
approach is the numerical approach, where we can use 
codes based on the fluid mechanics theory to give 
approximations of the behavior of the mantle in a 
discretized space and time scenario. 

What must be a concern dealing with numerical codes is 
how to evaluate its applicability to solve certain problems. 
The accuracy and precision of the numerical method must 

be studied to allow data reliability. The so-called 
benchmarks play this study role allowing researchers to 
team up and compare their codes through statistics, 
proposing pre-defined simulations seeking similar results. 
Once published, these results can be useful for other 
researchers to validate their codes and, because of that, 
the scenario simulated by them can be considered for 
mantle understanding. 

This work has the objective to test the 3D finite element 
parallel code CitcomCU from the Computational 
Infrastructure for Geodynamics (CIG) team modified from 
the original Citcom code from Moresi and Gurnis (1996), 
while comparing its results with the results obtained by 
Blankenbach et al. (1989) benchmark. While doing this, the 
found limitations of the CitcomCU will be presented as a 
way of helping further research in mantle dynamic 
problems using the CitcomCU code. 

Method 

CitcomCU is a modification from the original code Citcom 
from Moresi and Gurnis (1996) written in C programming 
language and under the GNU General Public License of 
free usage. It works with a file of initial conditions which 
contains the geometric and physical information such as 
the Rayleigh number (𝑅𝑎), boundary conditions and initial 

thermal state. All these required parameters are non-
dimensional.  

These parameters were defined for each one of the 
Blankenbach et al. (1989) studied cases which will be 
described ahead. In Blankenbach et al (1989) the models 
are 2D thermal convections of a non-rotating fluid with 
infinite Prandtl number using the Boussinesq 
approximation in rectangular cells. As the CitcomCU is a 
3D numerical code, the extra dimension of the simulation 
was defined in every case as being narrow and invariant, 
that is, the temperature and velocity gradients in that 
direction were set to be null in the initial file. 

The chosen cases from Blankenbach et al. (1989) were the 
cases 1a, 2a, 2b, 3 and 3’. The physical parameters are 
listed in Table 1. 

To qualify the CitcomCU code, it is necessary to make 
comparison studies. The first one is the qualitative study, 
verifying if the scenarios are similar enough to the one it 
will be compared to. The second is the quantitative study, 
making it possible to compare specific values and their 
deviations from the values from a benchmark.  

For the simulated cases, the following values were 
requested for a quantitative comparison: (i) the non-
dimensional Nusselt Number 𝑁𝑢, (ii) the non-dimensional 

root mean square velocity 𝑣𝑟𝑚𝑠, (iii) the non-dimensional 

temperature gradient 𝑄𝑖 in the positions 𝑄1(0, 𝑦, Δ𝑧), 

𝑄2(Δ𝑥, 𝑦, Δ𝑧), 𝑄3(Δ𝑧, 𝑦, 0) and 𝑄4(0, 𝑦, 0), (iv) the dynamic 
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topography at the top of the cell 𝜉1(𝑥 = 0) and 𝜉2(𝑥 = Δ𝑥), 

(v) the dynamic topography at the bottom of the cell 𝜉3(𝑥 =
0) and 𝜉4(𝑥 = Δ𝑥) and (vi) the 𝑥 value (function of 𝑏) of the 

intersection between the topography curve and the zero 
curve, where the zero was defined as the mean dynamic 
topography of that simulation. 

Table 1 – Properties, symbols and values. 
Property Symbol Value (SI) 

Density 𝜌 4000 

Gravity 𝑔 10 

Thermal expansion coefficient 𝛼 2.5×10−5 

Height of the cell 𝑏 106 

Kinematic viscosity at surface 𝜈0 2.5×1019 

Thermal diffusivity 𝜅 1.0×10−6 

Temperature contrast Δ𝑇 1000.0 

Surface temperature 𝑇0 0.0 

Volumetric rate of internal 
heating 

𝑞 5.0×10−9 

Thermal capacity 𝑐𝑃 1.25×103 

Horizontal length of the cell Δ𝑥 1.0𝑏 (Case 1a) 

  1.0𝑏 (Case 2a) 

  2.5𝑏 (Case 2b) 

  1.5𝑏 (Case 3 and 
3’) 

Vertical length of the cell Δ𝑧 1.0𝑏 

With the geometry of the cells described in Table 1, the 
benchmark cases are: 

Case 1a. Convection is steady and the viscosity is constant 
in a square box, where the temperature is zero on top of 
the cell and Δ𝑇 on the bottom with no internal heat sources. 

The sidewalls are symmetrically reflective and therefore 
𝜕𝑇/𝜕𝑥 =  0. All boundaries are absent of stresses and the 

𝑅𝑎 =  10000. To understand how the grid size affects the 

result, three sizes were used: (65×2×65), (33×2×33) and 

(17×2×17). These sizes represent the number of nodes 

each grid has in each coordinate component (𝑥×𝑦×𝑧). 

Case 2. This case has all boundary conditions as Case 1a 
except that now viscosity is temperature- and depth-
dependent as illustrated in equation 1. 

𝜈 = 𝜈0 exp [
𝛽𝑇

Δ𝑇
 +

𝛾(1 − 𝑧)

𝑏
]                     (1) 

where for Case 2a, 𝛽 = 𝑙𝑛(1000) and 𝛾 = 0 with 𝑅𝑎 =
10000. For case 2b, 𝛽 = 𝑙𝑛(16384) and 𝛾 = 𝑙𝑛(64) with 

𝑅𝑎 = 10000. The different grid sizes used were: (73×2×
73), (37×2×37) and (19×2×19). 

Case 3. This case consists of a time-dependent convection 
with constant viscosity and internal heat source. Tangential 
velocity at the top and bottom of the cell is null. The top is 
an isothermal with 𝑇 = 0 and at the bottom the gradient 

𝜕𝑇/𝜕𝑧 = 0. The reflective symmetry is still adopted and the 

Rayleigh number is defined as 

𝑅𝑎 =
𝛼𝑔𝑞𝑏5

𝜅2𝜌𝑐𝑃𝜈
= 216000                           (2) 

For the Case 3’, Ra was considered to be 218000. The size 

of the grid in both these last two cases was (97×3×65). 

It is important for a simulation to define the initial 
temperature configuration for the simulation to run. This will 
increase the convergence of the simulation and, more 
importantly, will give an initial scenario to observe its 
evolution. For Case 1a the initial temperature configuration 
was not needed because of its simplicity. For Case 2a and 
2b the following was done: from a vertical linear 
temperature variation, a temperature 𝑇∗(𝑥, 𝑧) was added 

as shown in equation 3 as proposed in Turcotte and 
Scubert (2002).  

𝑇∗(𝑥, 𝑧) = 𝑇0
∗ cos (

𝜋𝑧

𝑏
) cos (

2𝜋𝑥

𝜆
)                   (3) 

where 𝑥 and 𝑧 are the coordinates (note that it does not 

depend on the 𝑦 coordinate), 𝑇0
∗ is the non-dimensional 

amplitude of the added temperature and 𝜆 is the non-

dimensional wavelength of the added temperature 
function. In both Cases 2a and 2b 𝜆 was defined to be 2Δ𝑥 

and 𝑇0
∗ = 0.1 to generate a single convection cell. 

For the Case 3 and 3’, the initial temperature configuration 
was set to be the result of the Case 2a. Therefore, the initial 
temperature scenarios is already of a single developed 
convection cell. 

Results 

Case 1a. The results of the simulation are presented in 
Table 3 with the reference Blankenbach results in Table 2. 
Relatively higher 𝑄1, 𝑄2 amd 𝑁𝑢 are observed.  

Table 2 – Results for Case 1a with deviations adapted from 
Blankenbach et al. (1989). 

Parameter Value 

𝑁𝑢 4.884409 ± 0.000010 
𝑣𝑟𝑚𝑠 42.864947 ± 0.000020 
𝑄1 8.059384 ± 0.000003 
𝑄2 0.588810 ± 0.000003 
𝜉1 2254.022 ± 0.050 
𝜉2 −2903.230 ± 0.050 

𝑥(𝜉 = 0) 0.539372 ± 0.000030 

Table 3 - Calculated values for each grid size 𝐺17, 𝐺33 and 

𝐺65, with (17×2×17), (33×2×33) and (65×2×65) nodes, 
respectively, and the percentage difference of the values 
from Blankenbach et al. (1989) for Case 1a. 

Grid Parameter Value Difference (%) 

𝐺17 

𝑁𝑢 4.485957 8.16 
𝑣𝑟𝑚𝑠 42.995191 −0.30 
𝑄1 7.273424 9.75 
𝑄2 0.54722 7.06 
𝜉1 2327.033 −3.24 
𝜉2 −2913.002 −0.34 

𝑥(𝜉 = 0) 0.529412 1.85 

𝐺33 

𝑁𝑢 4.784567 2.04 
𝑣𝑟𝑚𝑠 42.957696 −0.22 
𝑄1 7.839936 2.72 
𝑄2 0.57568 2.23 
𝜉1 2279.865 −1.15 
𝜉2 −2911.505 −0.29 

𝑥(𝜉 = 0) 0.515152 4.49 

𝐺65 

𝑁𝑢 4.857444 0.55 
𝑣𝑟𝑚𝑠 42.871608 −0.02 
𝑄1 8.000000 0.74 
𝑄2 0.585494 0.56 
𝜉1 2264.419 −0.46 
𝜉2 −2903.338 0.00 

𝑥(𝜉 = 0) 0.538462 0.17 
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Case 2a. The results for Case 2a are shown in Table 5 with 
the benchmark reference values presented in Table 4. 

 

Table 4 - Results for Case 1a with deviations adapted from 
Blankenbach et al. (1989). 

Parameter Value 

𝑁𝑢 10.0660 ± 0.0002 
𝑣𝑟𝑚𝑠 480.4334 ± 0.1000 
𝑄1 17.53136 ± 0.00400 
𝑄2 1.00851 ± 0.00020 
𝑄3 26.8085 ± 0.0100 
𝑄4 0.497380 ± 0.000100 
𝜉1 1010.92 ± 0.20 
𝜉2 −4098.09 ± 0.80 

𝑥1(𝜉 = 0) 0.67700 ± 0.00005 
𝜉3 386.38 ± 0.10 
𝜉4 −788.10 ± 0.50 

𝑥2(𝜉 = 0) 0.6308 ± 0.00020 

 

Table 5 - Calculated values for each grid size 𝐺19, 𝐺37 and 

𝐺73, with (19×2×19), (37×2×37) and (73×2×73) nodes, 
respectively, and the percentage difference of the values 
from Blankenbach et al. (1989) for Case 2a. 

Grid Parameter Value Difference (%) 

𝐺19 

𝑁𝑢 8.8778 11.80 
𝑣𝑟𝑚𝑠 563.5285 −17.30 
𝑄1 14.67090 16.32 
𝑄2 1.0 −0.47 
𝑄3 5.0216 81.27 
𝑄4 0.276714 44.37 
𝜉1 1174.06 −16.14 
𝜉2 −3450.71 15.80 

𝑥1(𝜉 = 0) 0.63158 6.71 
𝜉3 382.32 1.05 
𝜉4 −449.80 42.93 

𝑥2(𝜉 = 0) 0.52632 16.57 

𝐺37 

𝑁𝑢 9.6877 3.76 
𝑣𝑟𝑚𝑠 496.8795 −3.42 
𝑄1 16.82377 4.04 
𝑄2 0.96513 4.30 
𝑄3 12.7797 52.33 
𝑄4 0.410976 17.37 
𝜉1 1104.14 −9.22 
𝜉2 −3886.97 5.15 

𝑥1(𝜉 = 0) 0.67568 0.19 
𝜉3 413.77 −7.09 
𝜉4 −696.56 11.62 

𝑥2(𝜉 = 0) 0.62162 1.46 

𝐺73 

𝑁𝑢 9.9647 1.01 
𝑣𝑟𝑚𝑠 484.6638 −0.88 
𝑄1 17.326584 1.17 
𝑄2 0.99516 1.32 
𝑄3 22.0749 17.66 
𝑄4 0.508032 −2.14 
𝜉1 1046.02 −3.47 
𝜉2 −4041.7 1.38 

𝑥1(𝜉 = 0) 0.67123 0.85 
𝜉3 401.08 −3.80 
𝜉4 −799.00 −1.38 

𝑥2(𝜉 = 0) 0.63014 0.11 

 

Figure (1) shows all the simulated cases at their stationary 
solution. The scenarios can be compared to the 
Blankenbach et al. (1989) result shown in Figure (1a).  

 

(a) Isotherms with 𝛥𝑇/20 discretization for Case 2a 
adapted from Blankenbach et al. (1989). 

 

(b) Isotherms with 𝛥𝑇/20 spacing for Case 2a with 

(73×2×73) nodes. 

 

(c) Isotherms with 𝛥𝑇/20 spacing for Case 2a with 

grid of (17×2×17) nodes (left image) and 

(33×2×33) nodes (right image). 

Figure 1 – Isotherms for the Case 2a from Blankenbach 
et al (1989) and the simulated cases with lines every 
interval of 𝛥𝑇/20. 
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Case 2b. The reference benchmark values can be seen in 
Table 5 and the results of the simulations for the Case 2b 
are shown in Table 6 for each grid size. 

 

Table 6 - Blankenbach et al. (1989) results for Case 2b 
with deviations. 

Parameter Value 

𝑁𝑢 6.9299 ± 0.0005 
𝑣𝑟𝑚𝑠 171.755 ± 0.020 
𝑄1 18.4842 ± 0.0100 
𝑄2 0.17742 ± 0.00003 
𝑄3 14.1682 ± 0.0050 
𝑄4 0.61770 ± 0.00005 
𝜉1 1538.8 ± 3.0 
𝜉2 −4341.5 ± 1.5 

𝑥1(𝜉 = 0) 1.6358 ± 0.0030 
𝜉3 2311.8 ± 1.0 
𝜉4 −6639.70 ± 3.0 

𝑥2(𝜉 = 0) 1.7311 ± 0.0005 

 

Table 7 - Calculated values for each grid size 𝐺25×13, 

𝐺49×25 and 𝐺97×49, with (25×2×13), (49×2×25) and 

(97×2×49) nodes, respectively, and the percentage 
difference of the values from Blankenbach et al. (1989) for 
Case 2b. 

Grid Parameter Value Difference (%) 

𝐺25×13 

𝑁𝑢 5.5929 19.29 
𝑣𝑟𝑚𝑠 199.761 −16.31 
𝑄1 8.79690 52.41 
𝑄2 0.22468 −26.64 
𝑄3 9.8837 30.24 
𝑄4 0.59396 3.84 
𝜉1 1412.9 8.18 
𝜉2 −4651.7 −7.14 

𝑥1(𝜉 = 0) 1.7000 −3.92 
𝜉3 2392.9 −3.51 
𝜉4 −7406.50 −11.55 

𝑥2(𝜉 = 0) 1.8000 −3.98 

𝐺49×25 

𝑁𝑢 6.2775 9.41 
𝑣𝑟𝑚𝑠 182.257 −6.11 
𝑄1 15.3724 16.83 
𝑄2 0.17590 0.86 
𝑄3 11.9710 15.51 
𝑄4 0.60026 2.82 
𝜉1 1623.8 −5.52 
𝜉2 −4431.0 −2.06 

𝑥1(𝜉 = 0) 1.6327 0.19 
𝜉3 2421.0 −4.72 
𝜉4 −6892.9 −3.81 

𝑥2(𝜉 = 0) 1.7347 −0.21 

𝐺97×49 

𝑁𝑢 6.7545 2.53 
𝑣𝑟𝑚𝑠 174.448 −1.57 
𝑄1 17.8582 3.39 
𝑄2 0.17681 0.34 
𝑄3 13.3011 6.12 
𝑄4 0.57538 6.85 
𝜉1 1597.2 −3.80 
𝜉2 −4362.9 −0.49 

𝑥1(𝜉 = 0) 1.6237 0.74 
𝜉3 2352.7 −1.77 
𝜉4 −6680.10 −0.61 

𝑥2(𝜉 = 0) 1.7268 0.25 

 

Figure (2a) shows the Blankenbach et al. (1989) stationary 
solution and Figures (2b), (2c) and (2d) show the stationary 
solutions found with CitcomCU. 

 

 

(a) Isotherms with Δ𝑇/20 spacing from Blankenbach 
et al. (1989) for Case 2b. 

 

(b) Isotherms with Δ𝑇/20 spacing for Case 2b and 
grid with (25×2×13) nodes. 

 

(c) Isotherms with Δ𝑇/20 spacing for Case 2b and 

grid with (49×2×25) nodes. 

 

(d) Isotherms with Δ𝑇/20 spacing for Case 2b and 

grid with (97×2×49) nodes. 

Figure 2 – Isotherms for the Case 2b from Blankenbach et 
al (1989) and the simulated cases with lines every interval 
of 𝛥𝑇/20. 

 

Case 3. The results of the Case 3 simulations are shown 
in Table 8 compared with the Blankenbach et al. (1989) 
value. 
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Table 8 – Simulation results for Case 3 from Blankenbach 
et al. (1989) with percentage difference for the grid with 
(97×3×65) nodes. 

Parameter CitcomCU 
Blankenbach et al. 

(1989) 
Difference 

(%) 

𝑃𝑒𝑟𝑖𝑜𝑑 0.05003 0.04803 ± 0.00003 −4.16 
𝑁𝑢𝑚𝑎𝑥,1  7.292 7.379 ± 0.005 1.18 
𝑁𝑢𝑚𝑖𝑛,1 6.353 6.468 ± 0.005 1.78 
𝑁𝑢𝑚𝑎𝑥,2 7.192 7.196 ± 0.005 0.06 
𝑁𝑢𝑚𝑖𝑛,2 6.735 6.769 ± 0.005 0.50 

𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,1 61.768 60.367 ± 0.015 −2.32 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,1 32.022 31.981 ± 0.020 −0.13 
𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,2 56.11 57.43 ± 0.05 2.30 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,2 30.48 30.32 ± 0.05 −0.53 

 

Figure (3a) and (3b) shows the periodic behavior through 
time of a P2 cycle where there are two maximus and 
minimums in the Nusselt Number and in the 𝑣𝑟𝑚𝑠 profiles. 

Figure (4) show the relationship between these two values. 

 

 

(a) 𝑁𝑢 profile as function of the time 𝑡′. 

 

(b) 𝑣𝑟𝑚𝑠 profile as function of the time 𝑡′. 

Figure 3 – 𝑁𝑢 and 𝑣𝑟𝑚𝑠 graphs for Case 3. 

 

Figure 4 – 𝑁𝑢×𝑣𝑟𝑚𝑠 graph comparison between the values 
obtained with the CitcomCU (blue line) and the values from 
Blankenbach et al. (1989) (green dashed line) for Case 3. 

 

Figure (4) presents a shift from the Blankenbach et al. 
(1989) case, suggesting a common deviation for the 𝑁𝑢. 

Case 3’. The results of the Case 3’ are shown in Table 9 
compared with the Blankenbach et al. (1989) values. This 
case is a condition case from Blankenbach et al. (1989). 
That means it should be simulated only if the Case 3 result 
was satisfactory. 

 

Table 9 – Simulation results for Case 3’ from Blankenbach 
et al. (1989) with percentage difference for the grid with 
(97×3×65) nodes. 

Parameter CitcomCU 
Blankenbach 
et al. (1989) 

Difference 
(%) 

𝑃𝑒𝑟𝑖𝑜𝑑 0.09696 0.09568 −1.33779 
𝑁𝑢𝑚𝑎𝑥,1 7.3462 7.3825 0.491703 
𝑁𝑢𝑚𝑖𝑛,1 6.4584 6.5053 0.720951 
𝑁𝑢𝑚𝑎𝑥,2 7.3395 7.3837 0.598616 
𝑁𝑢𝑚𝑖𝑛,2 6.3809 6.4229 0.65391 
𝑁𝑢𝑚𝑎𝑥,3 7.2145 7.2606 0.634934 
𝑁𝑢𝑚𝑖𝑛,3 6.7901 6.8401 0.730983 
𝑁𝑢𝑚𝑎𝑥,4 7.0910 7.1232 0.452044 
𝑁𝑢𝑚𝑖𝑛,4 6.7192 6.7588 0.585903 

𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,1 61.3607 61.854 0.797523 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,1 32.0791 32.370 0.898672 
𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,2 60.2075 60.619 0.67883 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,2 32.3774 32.46 0.254467 
𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,3 59.0851 59.567 0.809005 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,3 30.4233 30.455 0.104088 
𝑣𝑟𝑚𝑠,𝑚𝑎𝑥,4 56.1676 56.058 −0.19551 
𝑣𝑟𝑚𝑠,𝑚𝑖𝑛,4 30.5602 30.603 0.139856 

 

Figure (5) shows the 𝑁𝑢×𝑣𝑟𝑚𝑠 graph for the Case 3’. 
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Figure 5 – 𝑁𝑢×𝑣𝑟𝑚𝑠 graph for the Case 3’ (red line) 
compared with the values obtained in Case 3 with 
CitcomCU (blue dashed line). 

Conclusions 

The 3D finite element parallel code CitcomCU presented 
good results for the Blankenbach et al. (1989) benchmark 
cases. It is important to point out that the calculated values 
for the temperature gradient were more unsatisfactory, 
therefore, to produce better results, a more refined grid is 
necessary when such data is required. It is recommended 
to make a first simulation with a small number of grid 
elements and then, once the high gradient zones are 
identified, make another simulation with smaller elements 
in those zones. 

CitcomCU uses a linear interpolation for the discrete data, 
which must be associated with this limitation of the gradient 
calculation. The observed shift in the third case is also 
related to this.  

In a general way, the code presented better results for 
higher grid resolution. The possible deviations from this 
conclusion must be associated with coincidence due to the 
zones with complex behavior with low resolution grid.  

The Case 3’ is also an argument in favor of the utilized 
numerical code, once it should be done only if the Case 3 
results were satisfactory (which they were) and the Case 
3’ present very good results as well. 

The general behaviors of the simulations were very close 
to those observed in the benchmark, which makes 
CitcomCU a good code for a qualitative study. The concern 
one must have is to produce reliable data of complex and 
high gradient scenarios balancing the grid size and the 
time for simulation to run. Once this balance is done, the 
CitcomCU is an excellent code for quantitative study as 
well. 
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